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Abstract

Let C be a curve defined by f (x, y) = 0 such that f (x, y) ∈ Q[x, y].
Faltings’ theorem relates the amount of solutions to C in Q to the genus
of the curve. This invites one to consider the set of solutions over a finite
extension of Q, and which field extensions give new points on the curve.
Along these lines, Mazur and Rubin studied curves by understanding
the field extensions of Q generated by a single point on that curve. We
ask which field extensions arise this way, what their Galois groups can
be, how many there are up to bounded complexity, and how this relates
to the geometry of the curve. We explored these questions for different
families of plane curves, using parametrization, Newton polygons, linear
programming, SageMath, and Hilbert irreducibility.

Background

Definition: Let K/Q be a Galois field extension. The Galois group G
of K/Q, denoted Gal(K/Q), is the group of automorphisms under function
composition of K that fix Q.[3]

Inverse Galois Problem: Let G be a finite group. Is there a finite Galois
extension K/Q such that Gal(K/Q) = G?

In our project we focused on a more specified version of the inverse Galois
problem. Let C be a plane curve over Q (that is, C is the set of points
(x, y) ∈ C2 such that F (x, y) = 0 for a fixed polynomial F (x, y)). If we
consider Q(P ) such that P is a point on C, which groups can arise as G =
Gal(Q(P )/Q)?

Lemke Oliver–Thorne produced several field extensions with Galois group Sn

by adjoining points on elliptic curves to Q. They also linked the finite quantity
of Sn field extensions up to bounded discriminant to the geometry of the
curve; Keyes extended this result to hyperelliptic curves.[4] Only n satisfying
certain divisibility conditions were considered in this work; indeed, a result
of Bhargava, Gross, and Wang outlines that for even-degree hyperelliptic
curves, there are “divisibility restrictions" on the parameterizations 100% of
the time.[2]

"Parameterization" Method

Definition: Consider a plane curve F (x, y) = 0. Let x(t), y(t) ∈ Q[t].
Then F (x(t), y(t)) = 0 is a parameterization of F (x, y). Let α ∈ Q. If
F (x(α), y(α)) = 0, then (x(α), y(α)) is a point on C : F (x, y) = 0.

The parameterization x(t) = t, y(t) = g(t)
h(t) on the hyperelliptic curve

F : y2 = f (x) gives the following:
g(t)2

h(t)2
− f (t) = 0

Θ(t) = g(t)2 − h(t)2f (t) = 0

For each root α such that Θ(α) = 0, P =
(

α,
g(α)
h(α)

)
is a point on F . We

adjoin P to Q so that Q
(

α,
g(α)
h(α)

)
is a Galois extension. The field Q

(
α,

g(α)
h(α)

)
is equal to Q(α).[4]

Figure 1: y2 = x3 + 1

Newton Polygons and Linear Programming

Let f (x, y) ∈ Q[x, y] where f (x, y) =
∑

i,j ai,jx
iyj for 0 ≤ i + j ≤

deg(f (x, y)). The Newton polygon of f (x, y) is the convex hull of the set
of points (i, j) such that ai,j is non-zero.
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Figure 2: Newton polygon of h(x, y) = 4x3y2 + 3x2y + x − 5x3y + 2y

Let x(t), y(t) ∈ Q[t], and let n := deg x(t), m := deg y(t). Using the
method of linear programming we can compute the degree of f (x(t), y(t))
geometrically. If ai,jx

iyj is a monomial of f (x, y) then the degree of that
monomial under f (x(t), y(t)) is in + jm; this value is maximized at a vertex
of the Newton Polygon of f .

Example: let x(t) = t and y(t) = t.
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Figure 3: i + j = 3, monomials with t-degree 3; i + j = 5, monomials with t-degree 5

Degrees of Parameterizations

Problem: Suppose deg f (x) is even. can we find parameterizations that
give us odd degree extensions that have Galois group that are not Sn?

Example: By the method of
linear programming, the possible
deg F (x(t), y(t)) for any parameteri-
zation x(t), y(t) ∈ Q[t] will be a mul-
tiple of 2.
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Figure 4: Newton Polygon of F (x, y) = y2 −
x4 − x2 − 1 = 0

We looked at polynomials f (x, y) ∈ Q[x, y] such that deg f (x, y) ≤ 4. We
wanted to see if we could find parameterizations of f (x, y) that give us odd
degree f (x(t), y(t)).

Let f (x, y) = Σkaijx
iyj and deg f (x) = max{i + j|aij ̸= 0} ≤ 4. We

partitioned the possible degrees of f (x, y) into sets A and B:

Let
A := {(1, 0), (0, 1), (1, 1), (2, 1), (1, 2), (1, 3), (3, 1)}
B := {(0, 0), (2, 2), (2, 0), (0, 2), (3, 0), (0, 3), (0, 4), (4, 0)}

Proposition: Let P be the polygon for f (x, y), and suppose that all of the
vertices of P are in set A. Then deg f (x, y) has no restrictions.

Consider again f (x, y); if all (i, j) ∈ B, then the Newton polygon seemed
to impose restrictions on deg f (x(t), y(t)). We wanted to see if a parame-
terization of f (x, y) caused cancellation of the highest degree terms, if new
deg f (x(t), y(t)) occur. To our knowledge, the following result is new:

Theorem 1. [A.–N.–V.]: Let P be the Newton Polygon of f (x(t), y(t)),
and suppose that degree ordered pairs of f (x, y), including the vertices of P ,
are elements of the set B. Suppose there exists parameterizations x(t) and
y(t), such that the highest degree terms of f (x(t), y(t)) cancel. Then the
resulting deg f (x(t), y(t)) is restricted to multiples of 2, 3 or 4.

Motivating Question

The Inverse Galois Problem: Let G be a finite group. Is there a
finite Galois extension K/Q such that Gal(K/Q) = G?

Our Extension: Let C be a plane curve over Q. If we consider
Q(P ) such that P is a point on C, which groups can arise as G =
Gal(Q(P )/Q)?

Sn Computations

It is a theorem by Bhargava that 100% of polynomials are irreducible and
have Galois group Sn.[1] Therefore, if we iterate through random curves and
parameterizations F (x(t), y(t)) = g(t)2 − f (t)h(t)2 we will likely find 100%
Sn Galois groups. Our Sage experiments agree with this result.

Figure 5: Frequency of a random degree 7 polynomial taking m primes to confirm Galois
group Sn.

Reverse Parametrization Strategy

Definition: Let V =(Z/nZ)×, and let ζn be a primitive nth root of unity.
The nth cyclotomic polynomial Φn(x) = Πa∈V (x − ζa

n) is the minimal poly-
nomial of the nth primitive roots of unity.[3]

We coded the following algorithm in Sage. Fix Θ(t) and make a Cartesian
product from its coefficients and loop through every element. We set each
element of the Cartesian product equal to the coeffecients of a prospective
g(t)2. Next, we verify that our choice of g(t)2 is a perfect square by factoring
and checking each factor for even multiplicity. If so, for Θ(t) = g(t)2 −
h(t)2f (t) = 0 we take g(t)2 − Θ(t) = h(t)2f (t). We then factor h(t)2f (t)
and set factors with even multiplicity equal to h(t)2 and odd equal to f (t).
We apply this method to the cyclotomic polynomials by setting Θ(t) = Φn(t).

Selected Cyclotomic Parametrizations

Φn f cyclotomic factors f non cyclotomic factors g2 parameter h parameter factors
Φ5 Φ6 x2 Φ2
Φ10 Φ3 x2 Φ1
Φ13 Φ3, Φ6, Φ14 x6 Φ2
Φ17 Φ4, Φ6, Φ8, Φ18 x8 Φ2
Φ25 Φ6, Φ30 x10 Φ2, Φ10
Φ26 Φ3, Φ6, Φ7 x6 Φ1
Φ29 Φ6, Φ7, Φ10, Φ14, Φ30 x14 Φ2
Φ34 Φ3, Φ4, Φ8, Φ9 x8 Φ1
Φ35 Φ3, Φ4, Φ6, Φ8 x10 − x9 + x5 − x + 1 x12 Φ1, Φ2
Φ39 Φ4, Φ6, Φ7, Φ12, Φ14 x12 Φ1, Φ2

Table 1: Computed examples of the reverse parameterizations of cyclotomic polynomials by
the Keyes method.

Elliptic Curve Group Law

Liu–Lorenzini found an elliptic curve y2 = −ℓ(x) with irreducible ℓ(x) which
parameterized such that f (x) = h(x)2+ℓ(x) where f (x) = Φ3(x)Φ4(x)Φ5(x).
Using the group law over elliptic curves and the irreducibility of ℓ(x) they
found that the curve had a new point over Q(ζ3, ζ4, ζ5) = Q(ζ60).[5]

We propose a series of plane curves which give new points over the pn cy-
clotomic field with p prime. We are interested in deploying the group law
method to find curves with new points over non pn cyclotomic fields.

Conjectures and Results

Conjecture A: Let 2 < n and let Φn(x) be a cyclotomic polynomial and
let d = deg(Φn). Then

x
d
2 − Φn(x) =

∏
j∈S

Φj(x)2 ·
∏
k∈T

Φk(x) · R(x)

for some finite S ⊂ Z+, T ⊂ Z+ such that S∩T = ∅ and for some irreducible
polynomial R(x) ∈ Q[x]. The following conditions also hold:
• S ∪ T ̸= ∅
• Either S = ∅, 1 ∈ S or 2 ∈ S

• If T = ∅ and f (x) = 1 then 6 | n

• R(x) is monic and deg(R(x)) is even

Conjecture B: If x(t) = y(t) = t then ∃f (x, y) = g(x) + h(y) for
g(x) ∈ Q[x] and h(y) ∈ Q[y] such that the Galois group of f (x(t), y(t))
is Ddegf (x(t),y(t)).

Conjecture C: Let p be an odd prime and m ∈ Z+. Let

F (x, y) = (xpm−1
)p−1 + (ypm−1

)p−2 + ... + (ypm−1
) + 1 + x + y = 0

be the associated plane curve of Φpm. Then F (x, y) is non-singular at every
point (−ζ, ζ), such that ζ is a primitive root of Φpm(t).

Theorem 2. [A.–N.–V.]: Consider the plane curve F (x, y) as described
in Conjecture C. Then for the parameterization x(t) = −t, y(t) = t, if α is
a root of F (x(t), y(t)), it follows that the Galois group of Q (x(α), y(α)) is
abelian.

Conjecture D: Let P be the polygon for f (x, y), and suppose that at least
one of the vertices of P is in the set A. Then deg f (x, y) has no restrictions.

Future Work

• Making a constructive proof of the sets S, T and R(x) in Conjecture A
will allow us to generalize a series of Cyclotomics which arise as
hyperelliptic curve parameterizations.

• If we can prove Conjecture C, then for every odd prime p and m ∈ Z+

we have a formula for a plane curve and a parameterization that yields
Φpm(t).
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