New Points on Plane Curves over Cyclotomic Fields

Abstract

Let C be a curve defined by $f(x, y)=0$ such that $f(x, y) \in \mathbb{Q}[x, y]$. Faltings' theorem relates the amount of solutions to C in \mathbb{Q} to the genus of the curve. This invites one to consider the set of solutions over a finite extension of \mathbb{Q} and which field extensions give new points on the curve. extension of \mathbb{Q}, and which field extensions give new points on the curve. Along these lines, Mazur and Rubin studied curves by understanding Along these lines, Mazur and Rubin studied curves by understanding the field extensions of \mathbb{Q} generated by a single point on that curve. We the field extensions of \mathbb{Q} generated by a single point on that curve. We ask which field extensions arise this way, what their Galois groups can be, how many there are up to bounded complexity, and how this relates to the geometry of the curve. We explored these questions for different families of plane curves, using parametrization, Newton polygons, linear programming, SageMath, and Hilbert irreducibility.

Background

Definition: Let K / \mathbb{Q} be a Galois field extension. The Galois group G of K / \mathbb{Q}, denoted $\mathrm{Gal}(K / \mathbb{Q})$, is the group of automorphisms under function
composition of K that fix \mathbb{Q}, 3$]$ composition of K that fix \mathbb{Q}. $[3]$
Inverse Galois Problem: Let G be a finite group. Is there a finite Galois extension \mathbb{K} / \mathbb{Q} such that $\operatorname{Gal}(\mathbb{K} / \mathbb{Q})=G$?
In our project we focused on a more specified version of the inverse Galois problem. Let C be a plane curve over \mathbb{Q} (that is, C is the set of points
$(x, y) \in \mathbb{C}^{2}$ such that $F(x, y)=0$ for a fixed polynomial $F(x, y)$. If we $(x, y) \in \mathbb{C}^{2}$ such that $F(x, y)=0$ for a fixed polynomial $F(x, y)$). If we
consider $\mathbb{Q}(P)$ such that P is a point on C, which groups can arise as $G=$ $\operatorname{Gal}(\mathbb{Q}(P) / \mathbb{Q})$?
Lemke Oliver-Thorne produced several field extensions with Galois group S by adjoining points on elliptic curves to \mathbb{Q}. They also linked the finite quantity of S_{n} field extensions up to bounded discriminant to the geometry of the curve; Keyes extended this result to hyperelliptic curves. [4] Only n satisfying certain divisisility conditions were considered in this work; indeed, a result of Bhargava, Gross, and wang outhines that for even-cegree hyperelliptic the time. [2]
"Parameterization" Method
Definition: Consider a plane curve $F(x, y)=0$. Let $x(t), y(t) \in \mathbb{Q}[t]$. Then $F(x(t), y(t))=0$ is a parameterization of $F(x, y)$. Let $\alpha \in \overline{\mathbb{Q}}$. If
The parameterization $x(t)=t, y(t)=\frac{g(t)}{h(t)}$ on the hyperelliptic curve
$F: y^{2}=f(x)$ gives the following
$\frac{g(t)^{2}}{h(t)^{2}}-f(t)=0$
$\Theta(t)=g(t)^{2}-h(t)^{2} f(t)=0$
For each root α such that $\Theta(\alpha)=0, P=\left(\alpha, \frac{g(\alpha)}{h(\alpha)}\right)$ is a point on F. We adjoin P to \mathbb{Q} so that $\mathbb{Q}\left(\alpha, \frac{g(\alpha)}{h(\alpha)}\right)$ is a Galois extension. The field $\mathbb{Q}\left(\alpha, \frac{g(\alpha)}{h(\alpha)}\right)$ is equal to $\mathbb{Q}(\alpha)$. 4$]$

Figure $1: y^{2}=x^{3}+1$

Newton Polygons and Linear Programming
Let $f(x, y) \in \mathbb{Q}[x, y]$ where $f(x, y)=\sum_{i, j} a_{i, j} i^{i} y^{j}$ for $0 \leq i+j \leq$ $\operatorname{deg}(f(x, y))$. The Newton polygon of $f(x, y)$ is the convex hull of the set of points (i, j) such that $a_{i, j}$ is non-zero.

Figure 2: Newton polygon of $h(x, y)=4 x^{3} y^{2}+3 x^{2} y+x-5 x^{3} y+2 y$
Let $x(t), y(t) \in \mathbb{Q}[t]$, and $\operatorname{let} n:=\operatorname{deg} x(t), m:=\operatorname{deg} y(t)$. Using the method of linear programming we can compute the degree of $f(x(t), y(t)$ geometrically. If $a_{i, j} x^{i} y^{j}$ is a monomial of $f(x, y)$ then the degree of that
monomial under $f(x(t), y(t)$ is in $+j m$; this value is maximized at a vertex of the Newton Polygon of f
Example: let $x(t)=t$ and $y(t)=t$.

Degrees of Parameterizations
Problem: Suppose $\operatorname{deg} f(x)$ is even. can we find parameterizations that pive us odd degree extensions that have Galois group that are not S_{n} ?

Example: By the method of linear programming, the possible $\operatorname{deg} F(x(t), y(t))$ for any parameterization $x(t), y(t) \in \mathbb{Q}[t]$ will be a multiple of 2 .

$\dot{0} \dot{1} \dot{2} 3 \dot{4} 5$

Figure 4: Newton Polygon of $F(x, y)=y^{2}$ $x^{4}-x^{2}-1=0$
We looked at polynomials $f(x, y) \in \mathbb{Q}[x, y]$ such that $\operatorname{deg} f(x, y) \leq 4$. We wanted to see if we could find parameterizations of $f(x, y)$ that give us odd degree $f(x(t), y(t))$.
Let $f(x, y)=\Sigma_{k} a_{i j} x^{i} y^{j}$ and $\operatorname{deg} f(x)=\max \left\{i+j \mid a_{i j} \neq 0\right\} \leq 4$. W partitioned the possible degrees of $f(x, y)$ into sets A and B :
Let
$A:=\{(1,0),(0,1),(1,1),(2,1),(1,2),(1,3),(3,1)\}$
$B:=\{(0,0),(2,2),(2,0),(0,2),(3,0),(0,3),(0,4),(4,0$

Proposition: Let P be the polygon for $f(x, y)$, and suppose that all of the vertices of P are in set A. Then $\operatorname{deg} f(x, y)$ has no restrictions

Consider again $f(x, y)$; if all $(i, j) \in B$, then the Newton polygon seemed to impose restrictions on $\operatorname{deg} f(x(t), y(t)$). We wanted to see if a parame terization of $f(x, y)$ caused cancellation of the highest degree terms, if nev $\operatorname{deg} f(x(t), y(t))$ occur. To our knowledge, the following result is new

Theorem 1. [A.-N.-V.]: Let P be the Newton Polygon of $f(x(t), y(t))$, and suppose that degree ordered pairs of $f(x, y)$, including the vertices of P are elements of the set B. Suppose there exists parameterizations $x(t)$ and $y(t)$, such that the highest degree terms of $f(x(t), y(t))$ cancel. Then th resulting $\operatorname{deg} f(x(t), y(t))$ is restricted to multiples of 2,3 or 4 .

> The Inverse Galois Problem: Let G be a finite group. Is there a finite Galois extension \mathbb{K} / \mathbb{Q} such that Gal $(\mathbb{K} / \mathbb{Q})=G$? Our Extension: Let C be a plane curve over \mathbb{Q}. If we consider $\mathbb{Q}(P)$ such that P is a point on C, which groups can arise as $G=$ $G \operatorname{Gal}(\mathbb{Q}(P) / \mathbb{Q})$?
S_{n} Computations
It is a theorem by Bhargava that 100% of polynomials are irreducible and have Galois group S_{n}. [1] Therefore, if we iterate through random curves and
parameterizations $F(x(t), y(t))=g(t)^{2}-f(t) h(t)^{2}$ we will likelv find 100% S_{n} Galois groups. Our Sage experiments agree with this result.

igure 5 : Frequency of a random degree 7 polynomial taking m primes to confirm Galois
group S_{n}
Reverse Parametrization Strategy
Definition: Let $V=(\mathbb{Z} / n \mathbb{Z})^{\times}$, and let ζ_{n} be a primitive nth root of unity. The nth cyclotomic polynomial $\Phi_{n}(x)=\Pi_{a \in V}\left(x-\zeta_{n}^{a}\right)$ is the minimal polynomial of the nth primitive roots of unity. $[3]$
We coded the following algorithm in Sage. Fix $\Theta(t)$ and make a Cartesian product from its coefficients and loop through every element. We set each element of the Cartesian product equal to the coeffecients of a prospective
$g(t)^{2}$. Next, we verify that our choice of $g(t)^{2}$ is a perfect square by factoring and checking each factor for even multiplicity. If so, for $\Theta(t)=g(t)^{2}-$ $h(t)^{2} f(t)=0$ we take $g(t)^{2}-\Theta(t)=h(t)^{2} f(t)$. We then factor $h(t)^{2} f(t)$ and set factors with even multiplicity equal to $h(t)^{2}$ and odd equal to $f(t)$.
We apply this method to the cyclotomic polynomials by setting $\Theta(t)=\Phi_{n}(t)$.

Selected Cyclotomic Parametrizations

Φ_{n}	f cyclotomic factors	f non cyclotomic factors	g^{2} parameter

the Keves method.

Elliptic Curve Group Law

Liu-Lorenzini found an elliptic curve $y^{2}=-\ell(x)$ with irreducible $\ell(x)$ which parameterized such that $f(x)=h(x)^{2}+\ell(x)$ where $f(x)=\Phi_{3}(x) \Phi_{4}(x) \Phi_{5}(x)$ found that the curve had a new point over $\mathbb{Q}\left(\zeta_{3}, \zeta_{4}, \zeta_{5}\right)=\mathbb{Q}\left(\zeta_{6}\right) \cdot[5]$

We propose a series of plane curves which give new points over the p^{n} cy dotomic fied wis p in deploying the group lav

Conjectures and Results

Conjecture A. Let $2<n$ and let $\Phi(x)$ be a cyclotomic polynomial and

 et $d=\operatorname{deg}\left(\Phi_{n}\right)$. Then$$
x^{\frac{d}{2}}-\Phi_{n}(x)=\prod_{j \in S} \Phi_{j}(x)^{2} \cdot \prod_{k \in T} \Phi_{k}(x) \cdot R(x)
$$

for some finite $S \subset \mathbb{Z}^{+}, T \subset \mathbb{Z}^{+}$such that $S \cap T=\emptyset$ and for some irreducible polynomial $R(x) \in \mathbb{Q}[x]$. The following conditions also hold:

- $S \cup T \neq \emptyset$
- Either $S=\emptyset, 1 \in S$ or $2 \in S$
- If $T=\emptyset$ and $f(x)=1$ then $6 \mid n$
- $R(x)$ is monic and $\operatorname{deg}(R(x))$ is even

Conjecture B: If $x(t)=y(t)=t$ then $\exists f(x, y)=g(x)+h(y)$ for $g(x) \in \mathbb{Q}[x]$ and $h(y) \in \mathbb{Q}[y]$ such that the Galois group of $f(x(t), y(t))$ is $\mathrm{D}_{\operatorname{deg}} f(x(t), y(t)$.
Conjecture C: Let p be an odd prime and $m \in \mathbb{Z}^{+}$. Let
$F(x, y)=\left(x^{p^{m-1}}\right)^{p-1}+\left(y^{p^{m-1}}\right)^{p-2}+\ldots+\left(y^{p^{m-1}}\right)+1+x+y=0$ be the associated plane curve of $\Phi_{p^{m}}$. Then $F(x, y)$ is non-singular at every point $(-\zeta, \zeta)$, such that ζ is a primitive root of $\Phi_{p^{m}}(t)$.
Theorem 2. [A.-N.-V.]: Consider the plane curve $F(x, y)$ as described in Conjecture C. Then for the parameterization $x(t)=-t, y(t)=t$, if α is a root of $F(x(t), y(t))$, it follows that the Galois group of $\mathbb{Q}(x(\alpha), y(\alpha))$ is abelian.
Conjecture D: Let P be the polygon for $f(x, y)$, and suppose that at least one of the vertices of P is in the set A. Then $\operatorname{deg} f(x, y)$ has no restrictions.

Future Work

- Making a constructive proof of the sets S, T and $R(x)$ in Conjecture A will allow us to generalize a series of Cyclotomics which arise as hyperelliptic curve parameterizations.
- If we can prove Conjecture C, then for every odd prime p and $m \in \mathbb{Z}^{+}$ we have a formula for a plane curve and a parameterization that yields $\Phi_{p^{m}(t)}$

References

1] M. Bhargava, Galois groups of random integer polynomials and 1) M. Bhargava, Galois groups of ran

2] M. Bhargava, B. H. Gross, and X. Wang, a positive proportion of locally soluble hyperelliptic carves over \mathbb{Q} have no point over any odd degree extension., J. Amer. Math. Soc., (2017).
3] D. S. Dummitt and R. M. Foote, Abstract Algebra, Wiley, 3 ed., 2003.
(4) C. D. KEYES, Growth of points on hyperelliptic curves over number fields, (2019).
5) Q. Liu and D. Lorenzini, New points on curves, (2017).

Acknowledgements

- Dr. Renee Bell (Lehman College, City University New York)
- Kayla Gibson (Rutgers University)
- Department of Mathematics, Pomona College
- National Science Foundation (DMS-2113782)
- Any opinions, findings, and conclusions or recommendations expressed in iews od the National Science Foundation

